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Abstract

The goal is to introduce Khovanov homology and TQFTs and see how we can re-
cover the Khovanov homology from applying some TQFT. In the process, we sketch the
classification of 2-TQFTs.

1 Introduction

One of the fundamental ways in which mathematicians tell objects apart is by looking at
invariants of said objects. Since we are interested in knot theory, then a plan of attack for us
might be to find knot invariants to tell two knot diagrams apart.

Here is an idea: we can take any crossing in a knot diagram ⟨0⟩ and smooth it so that
it’s not a crossing by either ⟨H⟩ or ⟨1⟩ so this gives us two new knots with one less crossing.
Could we make an invariant that somehow depends recursively on these two simpler knots?

It turns out that we indeed can make such an invariant!

Theorem 1.1 (Jones polynomial). We can associate to a knot diagram a knot invariant known
as the Jones polynomial which is characterized by the following axioms:

⟨∅⟩ = 1; ⟨⃝L⟩ = (q + q−1)⟨L⟩; ⟨0⟩ = ⟨1⟩ − q⟨H⟩.

and for n+, n− the number of positive and negative crossings respectively, we have:

J(L) =
(−1)n−qn+−2n−

(q + q−1)
⟨L⟩

as the Jones polynomial.

Remark 1.2. The brackets by themselves are just called the bracket polynomial. We could
also have not divided by (q + q−1) and ended up with what we call the unnormalized Jones
polynomial. ◦

These axioms give us all the computational power we need! Let’s use them to compute the
Jones polynomial for the trefoil.
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Example (Jones polynomial for trefoil). Consider the following diagram for the trefoil:

Figure 1: Diagram for the trefoil knot.

We could take the first crossing and smooth it two get two diagrams with one less crossing:

Figure 2: Possible smoothings for the first crossing in trefoil knot.

From the relations of the Jones polynomial, we can see that we only need to understand
these two to understand the original one. However, we can apply the same process to each of
these and eventually we get the following 8 resolutions :

Figure 3: Cube of resolutions for the trefoil knot.
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This figure above 3 is what we call the cube of resolutions1 for a knot diagram. It contains
all the information we need to compute the Jones polynomial and we can compute it as follows:

Figure 4: Computation for Jones polynomial of trefoil.

Each vertex has a collection of unknots with polynomial (q + q−1)k where k is the number
of unknots. The (−q)r factors come from the number of 1-smoothings we made to obtain
each resolution, and it comes from the smoothing relations for the polynomial. Note that we
organized these so that the cth column has c 1-smoothings. One can then finish the computation
and find the Jones polynomial to be J(q) = q2 + q6 − q8.

The power of the Jones polynomial should be clear; the relations give us a way to decrease
the number of crossings and so we can always reduce this enough to compute it.

Our goal will be to upgrade the Jones polynomial into a stronger invariant known as Kho-
vanov homology. It is possible to go straight ahead and define Khovanov homology directly
and prove its invariance. However, the way it originally came up was in the context of TQFTs,
and viewing it this way can help us understand more of its properties.

2 TQFT

TQFT is an acronym that stands for Topological Quantum Field Theory. The reason TQFTs
came about was because they somehow represented physical theories that physicists were in-
terested in.

1I’ll admit that what I’ve drawn doesn’t look like a cube, but the reason for this is that n crossings give 2n

resolutions and an n-dimensional cube has 2n corners.
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Before, we give the definition of a TQFT, we need to talk a bit about the notion of a
cobordism between two manifolds.

Definition 2.1 (Cobordism). A cobordism between two closed, oriented n-dimensional mani-
folds M1 and M2 is an oriented n+ 1-dimensional manifold N such that

∂N = M1 ⊔M2.

⋄

Remark 2.2. It turns out that cobordism gives an equivalence relation between manifolds!
Even more, since M × I gives a cobordism from a manifold to itself. Then if we consider
the empty set as a manifold, then it is the identity and the set of smooth manifolds up to
diffeomorphisms becomes a group under disjoint union; it is even a Z/2Z−module. If we also
consider the product operation, then we get graded ring. ◦

The study of cobordisms is very rich and interesting, but we won’t get into it here. The
definition alone is enough to define TQFTs.

Definition 2.3 (TQFT). A TQFT of dimension d is an assignment Z of a vector space to
each diffeomorphism class of closed d − 1 dimensional manifold, and for each diffeomorphism
class of oriented cobordism a linear map between the vector spaces. Gluing cobordisms has
the effect of composition on the vector spaces. A disjoint union of manifolds should assign the
tensor product of the spaces in each of the two manifolds. ⋄

Remark 2.4. This definition is admittedly a bit funky. It is not at all clear what is meant by an
assignment here. This turns out to be pretty technical so we leave a more detailed discussion
to the appendix. ◦

Remark 2.5. It’s important that we take diffeomorphism so that we can glue nicely. However,
note that this means we should also worry about the choice of smooth structure if we venture
into higher dimensions. For low dimensions this doesn’t matter. ◦

In the vertices of our cube of resolutions we had unknots and the way we related these to
build up the diagram was by smoothing the crossings. It turns out that we can think of the
unknots as the disjoint union of circles and our smoothings as cobordisms. So what we want
to study are 2-TQFTs!

All closed 1 manifolds are disjoint unions of the circle S1 so we can expect that this case
could be easy to study. Given a 2-TQFT Z, then if we know its value on the circle

Z(S1) = V,

then we know its value everywhere

Z
( k⊔
i=1

S1
)
= V ⊗k.

Now consider the following cobordisms:
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Figure 5: Pair of pants.

Example (Pair of Pants). This gives a cobordism betweem S1 ⊔ S1 ! S1, and Z takes this
to a map

µ : V ⊗ V ! V

which we call the multiplication. We could also think of the pants in the opposite direction,
where now instead we get a map

δ : V ! V ⊗ V

which we call the comultiplication.

Figure 6: Twist.

Example (Twists). We could also consider the twist as above. Notice that if we compose this
with the (co)multiplication, we actually get a manifold diffeomorphic to the original so the
(co)multiplication must be commutative!
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Figure 7: This diffeomorphism shows (co)multiplication is commutative.

Figure 8: Cap.

Example (Disk). Since the circle bounds, this gives a cobordism S1 ! ∅, and Z takes this to
a map

ϵ : V ! C

which is a unit for the comultiplication. If we look at this cobordism in the opposite direction,
then we get a map

η : V ! C

which gives a unit element for its multiplication. To see that these are indeed units, we can
just look at the cobordism below:

Example (V is its dual). If we compose these two maps to get σ = η ◦ µ, then we get

V ⊗ V ! V ! C

which is a non-degenerate pairing and so V ∼= V ∗. This was not immediately obvious at first,
but now we can see that V is finite dimensional!

Exercise (Frobenius Law). The Frobenius Law states that

(1⊗ µ) ◦ (δ ⊗ 1) = δ ◦ µ = (µ⊗ 1) ◦ (1⊗ δ)
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Figure 9: This shows we have a (co)unit.

If you want to gain familiarity with TQFTs, you can try your hand at drawing the cobordisms
for these.

Definition 2.6 (Commutative Frobenius Algebra). A vector space V over a field k with uni-
tal multiplication and comultiplication satisfying the Frobenius law is a Frobenius algebra
(CFA). It is commutative if both the multiplication and comultiplication are commutative. ⋄

Theorem 2.7. A commutative Frobenius algebra is the same as a 2 dimensional TQFT.

This is great since we now have a purely algebraic characterization of 2 dimensional TQFTs!
We’ve seen how a 2-TQFT provides us with a commutative Frobenius algebra; now we just
need to see the other way around.

Lemma 2.8. Any cobordism can be built out of caps, cups and pants.

I won’t make the statement of this more precise, but I’ll elaborate a bit on how you can
believe in this:

Consider our 2 dimensional manifold X sitting in R3 and height as a smooth function
h : X ! R. Then for any real number a, we can consider X≤a the subset of X which height
less than a. The topology of X≤a only changes over critical points of X which are either local
extrema or saddles.

Exercise. Each of these 3 corresponds to a cap, cup or pant. Which is which?

So if we start at a small value of a0 so that X≤a0 = ∅ and go up to some a1 so that X≤a1 ,
then the way we start building X with the singularities described above.

Remark 2.9. There are a lot of details that go into this, and this general approach is called
Morse Theory. You can see [MSW69] for more details. ◦

So now we know that what we really have to study are the relations between the pants,
caps and cups. It’s not at all clear, but you can actually show that the Frobenius algebra gives
us all the possible relations between these!

So modulo these details, we’ve proved 2.7. So if we want to give a 2 TQFT, it’s enough to
give the Frobenius algebra! The
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Definition 2.10 (Khovanov’s TQFT). Let V be the graded C vector space spanned by the
basis {v+, v−}, where these have gradings ±q corresponding to their subscript. We define the
multiplication as

• µ(v+ ⊗ v+) = v+

• µ(v+ ⊗ v−) = µ(v− ⊗ v+) = v−

• µ(v− ⊗ v−) = 0

and comultiplication as

• δ(v+) = v+ ⊗ v− + v− ⊗ v+

• δ(v−) = v− ⊗ v−

⋄

The idea will be as follows: in our cube of resolutions 3, all of the vertices were circles and
a TQFT assigns to each vertex a vector space. There is even more structure, in fact. We can
relate the vertices to one another via cobordisms, and these should induce maps in their vector
spaces. The resulting structure will be a chain complex that is homotopy invariant; i.e. its
homology is invariant.

3 Khovanov Homology

Before going further, we need to talk a bit more seriously about the cube of resolutions and
set up some terminology:

Definition 3.1 (Cube of resolutions). Given a knot diagram K, the cube of resolutions is the
following data arranged as in figure 3:

• A set of crossings χ of size n := |χ| which we number arbitrarily. We also keep track of
n+ and n− the number of positive and negative crossings respectively.

• A set of resolutions corresponding to strings s ∈ {0, 1}n where si means the ith crossing
is resolved via an i−smoothing.

• A set of maps ξ ∈ {0, 1, ⋆}n with just one ⋆ given as follows: if ξk = ⋆, then for a string s

so that sk = 0, we define an map dξ : s ! s′ where s′i = si for all i except at i = k where
s′k = 1. That is, the index with ⋆ indicates a shift from 0 to 1.

We arrange the resolutions in n columns as follows: a resolution s belongs in the rth column
Cr if

∑
i si = r, that is if it has exactly r 1-smoothings. Then we can see that the maps in ξ

all take an element living in the rth column into the r+1th column. ⋄

The cube might seem very scary, but it’s actually not all too bad. An odd thing you might
have noticed is that, right now, the maps in the cube don’t have any meaning. The idea is that
we can think of these maps as cobordisms between the knots of the corresponding smoothings.
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Figure 10: Cobordism between 0 and 1 smoothing.

So then we have collection of circles and cobordisms between these! So now we have arrows
in our diagram:

Figure 11: Differentials in cube of resolutions.

The idea still is to apply Khovanov’s TQFT to this diagram and eventually get a chain
complex. However, there are some nice categorial properties that we have right now and it
turns out, we can get "chain complexes" right now by considering formal direct sums, and
these are already invariant in a sense.

That is to say, before applying the TQFT to this and showing the homology of the resulting
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chain complex is invariant, what we have is already a knot invariant in some other sense, and
we can just apply Khovanov’s TQFT to it. It is worth noting that applying the TQFT to this
does lose some information, however, it is a much easier structure to deal with.

We simply skip ahead and define the chain complex of vector spaces that we get:
Let JKKr be the rth column, i.e. resolutions with exactly r 1-smoothings. Then we get

JKKn ! ... ! JKK1 ! 0

where
dr : JKKr ! JKKr+1 is given by dr :=

∑
|ξ|=1

(−1)ξdξ

where (−1)ξ :=
∑

i<j ξi where j is the index at which ξj = ⋆ and |ξ| =
∑

i ̸=j ξi which tells us
what column it starts on. The map dξ itself depends on how the cobordism acts on the vertices
and corresponds to either multiplication or comultiplication in Khovanov’s TQFT (and it acts
by 0 on the other vertices which don’t directly participate in this.)

Exercise. Show that this satisfies dr+1 ◦ dr = 0.

This chain complex is still not a knot invariant, but it’s homology is, so we can get homology
groups Hi(K) where each of these is a graded vector space. We can define the graded dimension
of a graded vector space V as

qdim(V ) :=
∑
n∈Z

dim(Vn)q
n

where Vn ⊂ V is the subspace of graded dimension n.
Then we can define an invariant based on these:

Definition 3.2 (Poincaré series). The Poincaré series of graded homology groups Hi(K) is
defined as

p(t) =
∑
n≥0

tnqdim(Hi(K))

⋄

and this invariant recovers the Jones polynomial:

Theorem 3.3. The Euler Characterstic, defined by p(−1) is the same as the unnormalized
Jones polynomial.

So this invariant indeed recovers the Jones polynomial! This shows that this invariant is
at least as strong as the Jones polynomial, and in fact, there are examples that it is indeed
stronger (see [BN02].)
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Appendices

A Chain Complexes

If you haven’t seen chain complexes before, here is a quick guide to some basic facts and
definitions.

Definition A.1 (Chain Complex). A chain complex is a sequence of vector spaces2

... ! Vn+1 ! Vn ! Vn−1 ! ...

with maps dn : Vn+1 ! Vn such that dn ◦ dn+1 = 0. We usually drop the subscript and just
write d2 = 0. It is bounded if only finitely many groups are non-zero. We will only consider
bounded chain complexes. ⋄

Definition A.2 (Homology). The homology of a chain complex is defined as

Hn :=
ker(dn+1)

im(dn)

which is well-defined since the condition d2 = 0 tells us that im(dn+1) ⊂ ker(dn). ⋄

Definition A.3 (Map of chain complexes). A map of chain complexes is a commutatvive
diagram:

... Vn+1, Vn, Vn−1, ...

... Wn+1 Wn Wn−1 ...

⋄

Remark A.4. Such a diagram induces a well-defined map in homology. If the map is an
isomorphism in homology, we say this is a quasi-isomorphism. ◦

2More generally, you could consider R-modules for a commutative ring R. A common example would be
abelian groups taking R = Z.
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B A bit about categories

Some of the definitions which we’ve seen here are secretly related to category theory. We briefly
explain some of the relations.

Definition B.1 (Category). A category C is the following data:

• A collection of objects Ob(C)

• A set of morphisms C(x, y) for any two objects a and b.

• A composition law

⋄

Here are the main examples for us

Definition B.2 (Cobordism Category). We can consider d-dimensional (oriented) cobordisms
to be a category in the following way:

• It has closed d− 1 dimensional manifolds (up to diffeomorphism) as objects

• It has oriented d dimensional manifolds (up to diffeomorphism) as morphisms between
its boundary components.

⋄

Definition B.3 (Vector Spaces). We can consider vector spaces over a given field, say C, as a
category where

• It has vector spaces as objects

• It has C−linear maps as morphisms.

⋄

So we can see that TQFT is related to these categorical notions: it is some sort of function
between categories. This turns out to be what is called a functor.

Definition B.4 (Functor). A functor F : C ! D

• Associates to each object X ∈ Ob(C) an object F (X) ∈ Ob(D)

• Associates to each f ∈ C(X, Y ) a morphism F (f) ∈ D(F (X), F (Y ))

• The assignment of morphisms must take the identity morphism to the identity morphism
and it must respect composition of morphisms

⋄
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So now we can (almost) formalize our definition of TQFT:

Definition B.5 (TQFT). A TQFT is a symmetric monoidal functor Z : Cob(n) ! VectC. ⋄

What does symmetric monoidal mean? A symmetric monoidal category is a category
equipped with a tensor product of sorts, and a symmetric monoidal functor is one that re-
spects this. The symmetric monoidal structure for vector spaces is the tensor product and for
cobordisms is the disjoint union.

Remark B.6. There exists a notion of what is called a pre-additive category for which it makes
sense to define a notion of complexes. The nature of the cube of resolutions is related to this,
and one could get a "chain complex" for the cobordism category. Then, instead of applying
Khovanov’s TQFT to this and showing that it’s a knot invariant, one could show that this is
already an invariant in some sense and that Khovanov’s TQFT preserves it. In particular, this
is the step where Khovanov’s TQFT itself matters, and any other TQFT that preserves this
notion of invariance would also work. ◦
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