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An attempt to learnmore about etale cohomology. I will use the spelling “etale” due tomy laziness.

1. Introduction

Lecture is given by Vidhu.

Let X be a variety over k = Fq a finite field, where q = pm. We want to understand the Fq-points
of X . The idea is to look at X(Fqn) for all n at once. So let

ζX(t) = exp

(∑
n

#X(Fpn)

n
tn

)
.

This is the zeta function for X . Weil had the following conjectures, which are now theorems:

(1) ζX(t) is a rational function;

(2) There is a functional equation: if X is smooth and proper of dimension n, then

ζX(q−nt−1) = ±q
nE
2 tEζX(t)

where E is the Euler characteristic;

(3) (Riemann Hypothesis) All roots and poles of ζX(t) have absolute value q i
2 , i ∈ Z;

(4) IfX is smooth and proper, the number of roots and poles with absolute value q− i
2 is equal

to the i-th Betti number.

To prove this, Weil tried to developed the Weil cohomology theories. Let L be a field of charac-
teristic 0, X a smooth projective variety over some field k. Weil cohomology theories assigns to X
some vectors spaces over L denoted by H i(X) for each i ≥ 0, such that

(1) H i is functorial: if X → Y is a morphism of varieties, then we have a linear map f∗ :
H i(Y ) → H i(X);

(2) H i(X) = 0 for i > 2n;

(3) The Lefschetz fixed point formula should be true: if ϕ : X → X has finitely many fixed
points, each of multiplicity 1, then

#Xϕ =

2n∑
i=0

(−1)i tr(ϕ∗ : H i(X) → H i(X))

where Xϕ is the set of fixed points;

(4) The Kunneth formula should be true;
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(5) The Poincare duality should be true.

What is this good? Suppose we have a Weil cohomology theory for smooth projective varieties
over k = Fq. Let F : X → X be the Frobenius, then X(Fqn) = XFn . Assume for now F ∗ has only
one eigenvalue, so under some basis on H i which is one dimensional it is just multiplication by
some αi. Then the Lefschetz fixed point formula says

#X(Fqn) =
2n∑
i=0

(−1)iαn
i

so

ζX(t) =

2n∏
i=0

(1− αit)
(−1)i+1

.

This says the zeta function is rational. The functional equation will also follow from the Poincare
duality.

Question: given a field L of characteristic zero, can we create a Weil cohomology theory? Sheaf
cohomology for any sheaf won’t work, since non-trivial sheaves give vector spaces over k = Fq,
not L. We could try the constant sheaf L but then cohomology vanishes. In fact, Serre showed that
there is no cohomology theorem for L = Q such that it is functorial, satisfies the Kunneth formula,
and H1(C) = Q2 for C an elliptic curve. The idea is to look at a supersingular elliptic curve E. A
similar argument shows that there is no Weil cohomology theory overQp, where p = char(Fq).

However, we can make it work overQl where l doesn’t divide p using etale cohomology.

2. Etale rings maps

Let (A,mA) and (B,mB) be noetherian local rings. A local ring homomorphism (or as I like to call
it, a local map of local rings) f : A → B maps mA into mB , so it induces a map A/mA → B/mB as
mA is killed in the composition A → B → B/mB .

Definition 2.1. Let (A,mA) and (B,mB) be noetherian local rings. A local ring homomorphism
f : A → B is called unramified if mAB = mB , and A/mA ↪→ B/mB is finite and separable.

In the same situation, Let p be a prime ideal in B, and let q = f−1(p). We have the induced map
Aq → Bp, since if a /∈ q, then f(a) is not in p, so the multiplicative set A− q is mapped into units in
Bp. Is this map also unramified? No one knows when there is no finiteness assumption.

3. Etale Morphisms

Definition 3.1. Let f : X → Y be a morphism of scheme. We say it is etale if f is locally of finite
presentation (pf), flat, and unramified.

For unramified, if f(x) = y, we have a map of local rings f# : OY,y → OX,x, and we require
f#(my)OX,x = mx, and the residue field extension k(y) ↪→ k(x) is a finite separable extension.

Lemma 3.2. For f : X → Y locally finite presented and flat, the following are equivalent:

(1) Ω1
X/Y = 0;

(2) f is unramified, hence etale;
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(3) f is smooth of relative dimension 0;

(4) f is formally etale: given I ⊂ A is a nilpotent ideal and a diagram

SpecA/I X

SpecA Y

there is a unique way to filling the dashed arrow. (Think of it as saying f is a local diffeomorphism.)

(5) f is locally standard etale: for each x ∈ X and y = f(x), there exists affine neighborhoods U =
SpecS 3 x and V = SpecR 3 y, where S is of the form S = R[x]h/g where g is monic and g′ is a
unit in R[x]h.

Here are some examples.

(1) Let E be an abelian variety over a field k. The multiplication map [n] : E → E where
(n, char(k)) = 1 is etale.

(2) Gm → Gm given by t → tn is etale if (n, char(k)) = 1. This is because

Ω1
X/Y = k[t, t−1]dt/(ntn−1) = 0.

(3) Any open immersion is etale. So etale maps are not necessarily proper.

(4) Gm − {1} → Gm given by t → t2 is etale as long as char(k) 6= 2 and surjective, but this is
not proper.

(5) LetL/K be a finite separable extension. Then SpecL → SpecK is etale. Conversely, ifL/K
is not finite separable, then SpecL → SpecK is not etale.

(6) The Frobenius is never etale.

Lemma 3.3. The following properties hold:

(1) Open immersions are etale;

(2) Base change of an etale maps is etale;

(3) A composition of etale maps is etale;

(4) X
f−→ Y

g−→ Z is etale and g is etale imply f is also etale.

These would formally imply that being etale is closed under taking products, and passing to the reduced
subscheme.

4. Sites and Sheaves

Definition 4.1. Let C be a category. A Grothendieck topology on C is the following data: for each
object X , it assigns a set Cov(X) of collections of morphisms {Xi → X}i∈I such that

(1) it contains all isomorphisms: if V → X is an isomorphism, then {V → X} ∈ Cov(X);
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(2) if {Xi → X}i∈I ∈ Cov(X) and Y → X is any morphism in C, then the fiber products
Xi ×X Y exists in C and the collection

{Xi ×X Y → Y }i∈I
is in Cov(Y );

(3) if {Xi → X}i∈I ∈ Cov(X), and if for every i ∈ I we are given {Vij → Xi}j∈Ji ∈ Cov(Xi),
then the collection of composition

{Vij → Xi → X}i∈I,j∈Ji
is in Cov(X).

A category with a Grothendieck topology is called a site.

Elements in Cov(X) are called coverings of X .

As an example, let X be a topological space and let C be the category of open sets, where mor-
phisms are inclusions. Then for each open subset U ⊂ X , we can let Cov(U) to be the set of all
open covers of U , i.e. {Vi → U}i∈I is in Cov(U) if and only if Vi are all open subsets of U and
U = ∪i∈IVi. Then condition 1 is satisfied. For consition, if W → U is an inclusion of open subsets,
and {Vi} is an open cover of U , then Vi×U W , which is just Vi∩W , form an open cover ofW . Lastly,
if {Vi}i∈I covers U and {Wij}j∈Ji covers Vi, then {Wij}i∈I,j∈Ji is an open cover of U . Thus this is a
Grothendieck topology on the category of open sets for a topological space X .

Let S be a scheme. Let C be the category of S-schemes. For an object X in this category, define
Cov(X) to be the set of collections of S-morphisms {Ui → X}i∈I such that each Ui → X is an open
immersion and X = ∪i∈IUi. Clearly condition 1 is met since isomorphisms are open immersions.
For condition 2, suppose {Ui → X}i∈I ∈ Cov(X) and f : Y → X is any S-morphism, then
Ui ×X Y → Y are open immersions and they cover Y (these are just f−1(Ui)). Finally the third
condition is clearly true. This is the big Zariski site of a scheme.

LetX be a scheme. Let C be the category whose objects are etale morphisms U → X (namely it is
a full subcategory of the category ofX-schemes, where the structure map is required to be etale.)
Note that a morphism in this category is a diagram

U V

X

Here the composition is etale, and the second step is etale, so by Lemma 3.3 the map U → V is also
etale. In particular, by Lemma 3.3 again fiber products exist in this category. So all morphisms in
the category C are etale morphisms of schemes. We define a collection of morphisms {Ui → U}i∈I
to be in Cov(U) if the map ∐

i∈I
Ui → U

is surjective. Condition 1 is clearly true. Condition 2 is true because surjectivity is preserved under
base change for arbitrary scheme morphisms. (Curiously, in proving this one needs to use the fact
that for any scheme map X → S and Y → S, the natural map on topological spaces |X ×S Y | →
|X| ×|S| |Y | is always surjective.) Condition 3 is also clear. This is the small etale site.

Switching from a single scheme to the category ofX-schemes we get the big etale site. Namely, for
an X-scheme U , we define Cov(U) as the set of collections {Ui → U}i∈I of X-morphisms where
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each Ui → U is etale and the map ∐
i∈I

Ui → U

is surjective.

Similarly, take the underlying category to be the category ofX-schemes, we can also defineCov(U)
to be the set of collections {Ui → U}i∈I of X-morphisms where each Ui → U is flat and locally of
finite presentation and the map ∐

i∈I
Ui → U

is surjective. This is the fppf site. Recall that a morphism of schemes is faithfully flat if it is flat and
surjective. Also recall that a fppf morphism is (universally) open.

Definition 4.2. A presheaf on a category C is a contravariant functor from C to the category of
sets. If C has a Grothendieck topology, a sheaf is a presheaf F such that for each object U in C and
each of its coverings {Ui → U}i∈I , the equalizer sequence

F (U) →
∏
i∈I

F (Ui) ⇒
∏
i,j∈I

F (Ui × Uj)

is exact (this in particular means the first map is injective).

The key result we want to get to is faithfully flat descent. Here is the ring theoretic descent lemma:

Lemma 4.3. Let f : A → B be a faithfully flat ring homomorphism and let M be an A-module. Then the
sequence

0 → M → M ⊗A B → M ⊗A B ⊗A B

m⊗ b 7→ m⊗ 1⊗ b−m⊗ b⊗ 1

is exact. In other words we have an equalizer sequence
0 → M → M ⊗A B → M ⊗A B ⊗A B

Proof. Suppose the map f : A → B has an A-linear left inverse g : B → A (i.e. g ◦ f = idA).
Then M → M ⊗A B is injective since it also has a left inverse. In this case, g induces a map
gM : M ⊗A B → M , and gB : B ⊗ B → B which on pure tensors is given by b ⊗ b′ 7→ b ⊗ f(g(b)).
If an element α ∈ M ⊗A B is in the kernel, then

α = (gB ◦ p2)(α) = (gB ◦ p1)(α) = (fM ◦ gM )(α)

(If α = m⊗b is a pure tensor, this is sayingm⊗b = m⊗f(g(b)).) Thus we get the desired exactness
everywhere. Note that this doesn’t even use faithful flatness.

Now. by faithful flatness, the exactness of such our sequence is equivalent to the exactness of the
sequence after tensoring by B. But in that case thinking of B as A and B ⊗A B as B, we do have a
left inverse B ⊗A B → B given by multiplication. So we are done. �

Corollary 4.4. Let X be an affine scheme. If V → U is a faithfully flat map of affine schemes, then the
sequence

hX(U) → hX(V ) ⇒ hX(V ×U V )

is exact.
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Proof. Let U = SpecA, V = SpecB, and X = SpecR. Faithful flatness implies
0 → A → B → B ⊗A B

is exact by the previous lemma. And Hom(R,−) is left exact, so we are done. �

We develop criteria for presheaves to be fppf sheaves.

Lemma 4.5. Let F be a presheaf on the category of schemes which is a Big Zariski sheaf. Then F is a sheaf
for the fppf topology if and only if for every fppf morphism V → U , the sequence

F (U) → F (V ) ⇒ F (V ×U V )

is exact. In fact, it suffices to check only for affine schemes U and V .

Proof. First, any fppf morphism V → U is surjective, so {V → U} is a covering of U in the fppf
topology, so if F is a fppf sheaf then this condition is trivially true.

Take a general fppf covering {Ui → U}i∈I . Let V =
∐

i∈I Ui. Then {Ui} is an open cover of V in
the Zariski topology whose elements are disjoint. Since F is a big Zariski sheaf, the sequence

F (V ) →
∏
i

F (Ui) ⇒
∏
i,j

F (Ui ∩ Uj) = 0

is exact, so F (V ) ∼=
∏

i F (Ui). Similarly, {Ui ×U Uj}i,j∈I is an open cover of V ×U V in the Zariski
topology. So the sequence

0 → F (V ×U V ) →
∏
i,j

F (Ui ×U Uj) ⇒ 0

is exact (the third term contains elements of the form (Ui ×U Uj) ∩ (Uk × Ul) which is empty. If
there is only one Ui, then the equalizer is trivial so the sequence is still exact.) Thus F (V × V ) ∼=∏

i,j F (Ui ×U Uj) is an isomorphism. By functoriality we have a commutative diagram

F (U) F (V ) F (V × V )

F (U)
∏

i∈I F (Ui)
∏

i,j F (Ui ×U Uj)

where the top row is exact by assumption and the vertical maps are isomorphisms, so the bottom
row is also exact.

Now only assume the condition is true for affine U and V . We just need to show this implies the
same condition for all schemes U and V . So take an arbitrary fppf morphism f : V → U . We
need to show F (U) → F (V ) is injective and its image is the equalizer of F (V ) ⇒ F (V ×U V ). Let
U = ∪iUi be an affine open cover, let Vi = f−1(Ui), and choose an affine open cover Vi = ∪jVij for
each Vi. Each Vij maps into Ui, so we have a commutative diagram

F (U) F (V )

∏
i∈I F (Ui)

∏
i,j F (Vij)

Since F is a Zariski sheaf, the vertical maps are injections. Also, the image of each Vij inside Ui is
open because fppf morphisms are open, so these images form an open cover of Ui. Ui is affine so
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it is quasi-compact, so we can choose a finite subcover {Vijs → Ui}rs=1. This is an fppf covering of
Ui where everything is affine, so by assumption

F (Ui) →
r∏

s=1

F (Vijs)

is injective (the assumption is used on the disjoint union of all the Vijs). Taking the product over all
i, we see that the above diagram the bottommap is also injective, so the top arrow is also injective.

Now we need to show the exactness of

F (U) → F (V ) ⇒ F (V ×U V )

in themiddle. Weneed to reduce to the casewhereU is affine andV is quasi-compact. LetU = ∪iUi

be an affine open cover, and let Vi be the preimage ofUi. If we know the statement is true for affines,
then each

F (Ui) → F (Vi) ⇒ F (Vi ×Ui Vi)

is exact. Then using the commutative diagram formed by various sheaf properties

F (U) F (V ) F (V ×U V )

∏
i∈I F (Ui)

∏
i F (Vi)

∏
i,j F (Vi ×Ui Vi)

∏
i,j F (Ui ∩ Uj)

∏
i,j F (Vi ∩ Vj)

a b

c

we will get that the top row is exact. Notice that the map c is injective since Vi ∩ Vj → Ui ∩Uj is an
fppf covering and we have shown injectivity.

The reduction to V quasi-compact seems a bit technical so I’d like to skip. Nowwe handle the case
where U is affine and V is quasi-compact. Let V = ∪jVj be a finite affine open cover, by quasi-
compactness. Then

∏
j Vj is affine, and

∏
j Vj → V → U is an fppf covering. Now the assumption

gives the exactness of the bottom row in the diagram below

F (U) F (V ) F (V ×U V )

F (U) F (
∐

i Vi) F (
∐

i Vi ×U
∐

i Vi)

and we have shown the injectivity of the vertical maps. This implies the top row is exact in the
middle. �

We are ready to prove the main theorem.

Theorem 4.6. Let Y be any scheme. For any Y -scheme X , the functor hX = HomY (−, X) is a sheaf in
the fppf topology on the category of Y -schemes.

Proof. First notice that Y doesn’t play any role: if we know the result for Y = SpecZ, then we
know it for any Y . Also, we have already proven the case where X is affine by using the previous
criterion and the ring theoretic descent lemma.
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So letX be any scheme and letX = ∪iXi be an affine open cover. Using the previous criterion, we
just need to take an fppf morphism t : U → V where U, V are affine, and check that

hX(U) → hX(V ) ⇒ hX(V ×U V )

is exact.

First we prove injectivity of the first map. Let f, g : U → X be morphisms such that t ◦ f = t ◦ g.
Since t is fppf it is surjective, so f, g must be set-theoretically equal. Therefore f−1(Xi) = g−1(Xi),
which we denote by Ui, and by the affine result f |Ui = g|Ui as morphisms of schemes. Thus f = g
as morphisms of schemes.

Next we check exactness in the middle. Let f : V → X be a moprhism such that f ◦ p1 = f ◦ p2
where p1, p2 : V ×U V ⇒ V are the two projections. Now is the moment where use the fact that on
topological spaces |V ×U V | → |V |×|U | |V | is surjective. So if we denote by π1, π2 : |V |×|U | |V | → |V |
the two topological projections, we see that f ◦ π1 = f ◦ p2 because they are equal after composing
by that surjection on the left. Now for any element u ∈ U , since the map t is surjective we take
some preimage v ∈ V , and consider f(v). If v′ is another preimage, that means (v, v′) is an element
in |V | ×|U | |V |, so then f(v) = f(v′). Hence this procedure is a well-define way to give a set map
h : U → X . Furthermore, h is continuous: ifW is any open set inX , we have h−1(W ) = t(f−1(W )),
and t is fppf so it is open. Finally this continuous map is clearly unique with its properties. This
argument can be summarized by a coequalizer diagram

|V ×U V | |V | ×|U | |V | |V | |X|

|U |

f

t
h

realizing |U | as the coequalizer of |V ×U V | ⇒ |V | in the category of topological spaces.

We need to upgrade h : U → X to a map of schemes. Let Vi = f−1(Xi) and Ui = h−1(Xi). Then
t|Vi : Vi → Ui is fppf, and give the same after composing with the two projections. By the affine
result of exactness, there exist unique morphisms of schemes hi : Ui → Xi such that f |Vi = hi ◦ t|Vi .
To see hi and hj agree on Xi ∩ Xj , we can cover the intersection by affine opens, apply the same
affine exactness result, and conclude by uniqueness. Hence we obtain a global map of schemes
U → X , and it must agree with the h we defined previously by the uniqueness of the topological
map. So we are done. �
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